Machine learning-based CT radiomics features for the prediction of pulmonary metastasis in osteosarcoma.

阅读:3
作者:Pereira Helcio Mendonça, Leite Duarte Maria Eugenia, Ribeiro Damasceno Igor, de Oliveira Moura Santos Luiz Afonso, Nogueira-Barbosa Marcello Henrique
OBJECTIVE: This study aims to build machine learning-based CT radiomic features to predict patients developing metastasis after osteosarcoma diagnosis. METHODS AND MATERIALS: This retrospective study has included 81 patients with a histopathological diagnosis of osteosarcoma. The entire dataset was divided randomly into training (60%) and test sets (40%). A data augmentation technique for the minority class was performed in the training set, along with feature's selection and model's training. The radiomic features were extracted from CT's image of the local osteosarcoma. Three frequently used machine learning models tried to predict patients with lung metastases (MT) and those without lung metastases (non-MT). According to the higher area under the curve (AUC), the best classifier was chosen and applied in the testing set with unseen data to provide an unbiased evaluation of the final model. RESULTS: The best classifier for predicting MT and non-MT groups used a Random Forest algorithm. The AUC and accuracy results of the test set were bulky (accuracy of 73% [ 95% coefficient interval (CI): 54%; 87%] and AUC of 0.79 [95% CI: 0.62; 0.96]). Features that fitted the model (radiomics signature) derived from Laplacian of Gaussian and wavelet filters. CONCLUSIONS: Machine learning-based CT radiomics approach can provide a non-invasive method with a fair predictive accuracy of the risk of developing pulmonary metastasis in osteosarcoma patients. ADVANCES IN KNOWLEDGE: Models based on CT radiomic analysis help assess the risk of developing pulmonary metastases in patients with osteosarcoma, allowing further studies for those with a worse prognosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。