Adaptive Mesh Strategy for Efficient Use of Interface Elements in a 3D Probabilistic Explicit Cracking Model for Concrete.

阅读:3
作者:Mota Magno T, Rossi Pierre, Fairbairn Eduardo M R, Ribeiro Fernando L B, Tailhan Jean-Louis, Andrade Henrique C C
In this paper, the development of a 3D adaptive probabilistic explicit cracking model for concrete is reported. The contribution offered herein consists in a new adaptive mesh strategy designed to optimize the use of interface elements in probabilistic explicit cracking models. The proposed adaptive mesh procedure is markedly different from other strategies found in the literature, since it takes into account possible influences on the redistribution of stresses after cracking and can also be applied to purely deterministic cracking models. The process of obtaining the most appropriate adaptive mesh procedure involved the development and evaluation of three different adaptivity strategies. Two of these adaptivity strategies were shown to be inappropriate due to issues related to stress redistribution after cracking. The validation results demonstrate that the developed adaptive probabilistic model is capable of predicting the scale effect at a level similar to that experimentally observed, considering the tensile failure of plain concrete specimens. The results also show that different softening levels can be obtained. The proposed adaptive mesh strategy proved to be advantageous, being able to promote significant reductions in the simulation time in comparison with the classical strategy commonly used in probabilistic explicit cracking models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。