Mu-opioid receptor knockout on Foxp2-expressing neurons reduces aversion-resistant alcohol drinking.

阅读:15
作者:Carvour Harrison M, Roemer Charlotte A E G, Underwood D'Erick P, Padilla Edith S, Sandoval Oscar, Robertson Megan, Miller Mallory, Parsadanyan Natella, Perry Thomas W, Radke Anna K
Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. The transcription factor Foxp2 is a genetic marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice and are neuronal subpopulations of potential relevance to alcohol-drinking behaviors. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1(fl/fl)). Male and female Foxp2-Cre/Oprm1(fl/fl) mice were generated and heterozygous Cre+ (knockout) and homozygous Cre- (control) animals were tested for aversion-resistant alcohol consumption using an intermittent access (IA) task, operant responding for a sucrose reward, conditioned place aversion (CPA) to morphine withdrawal, and locomotor sensitization to morphine. The results demonstrate that deletion of MOR on Foxp2-expressing neurons renders mice more sensitive to quinine-adulterated alcohol. Mice with the deletion (vs. Cre- controls) also consumed less alcohol during the final sessions of the IA task, were less active at baseline and following morphine injection, and there was a trend toward less responding for sucrose under an FR3 schedule. Foxp2-MOR deletion did not impair the ability to learn to respond for reward or develop a conditioned aversion to morphine withdrawal. Together, these investigations demonstrate that Foxp2-expressing neurons may be involved in escalation of alcohol consumption and the development of compulsive-like alcohol drinking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。