Forecasting is a crucial step in almost all scientific research and is essential in many areas of industrial, commercial, clinical and economic activity. There are many forecasting methods in the literature; but exponential smoothing stands out due to its simplicity and accuracy. Despite the facts that exponential smoothing is widely used and has been in the literature for a long time, it suffers from some problems that potentially affect the model's forecast accuracy. An alternative forecasting framework, called Ata, was recently proposed to overcome these problems and to provide improved forecasts. In this study, the forecast accuracy of Ata and exponential smoothing will be compared among data sets with no or linear trend. The results of this study are obtained using simulated data sets with different sample sizes, variances. Forecast errors are compared within both short and long term forecasting horizons. The results show that the proposed approach outperforms exponential smoothing for both types of time series data when forecasting the near and distant future. The methods are implemented on the U.S. annualized monthly interest rates for services data and their forecasting performance are also compared for this data set.
Comparison of forecast accuracy of Ata and exponential smoothing.
阅读:4
作者:Cetin Beyza, Yavuz Idil
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2020 Aug 10; 48(13-15):2580-2590 |
| doi: | 10.1080/02664763.2020.1803813 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
