BACKGROUND: There is considerable controversy concerning the exact growth profile of size parameters during the cell cycle. Linear, exponential and bilinear models are commonly considered, and the same model may not apply for all species. Selection of the most adequate model to describe a given data-set requires the use of quantitative model selection criteria, such as the partial (sequential) F-test, the Akaike information criterion and the Schwarz Bayesian information criterion, which are suitable for comparing differently parameterized models in terms of the quality and robustness of the fit but have not yet been used in cell growth-profile studies. RESULTS: Length increase data from representative individual fission yeast (Schizosaccharomyces pombe) cells measured on time-lapse films have been reanalyzed using these model selection criteria. To fit the data, an extended version of a recently introduced linearized biexponential (LinBiExp) model was developed, which makes possible a smooth, continuously differentiable transition between two linear segments and, hence, allows fully parametrized bilinear fittings. Despite relatively small differences, essentially all the quantitative selection criteria considered here indicated that the bilinear model was somewhat more adequate than the exponential model for fitting these fission yeast data. CONCLUSION: A general quantitative framework was introduced to judge the adequacy of bilinear versus exponential models in the description of growth time-profiles. For single cell growth, because of the relatively limited data-range, the statistical evidence is not strong enough to favor one model clearly over the other and to settle the bilinear versus exponential dispute. Nevertheless, for the present individual cell growth data for fission yeast, the bilinear model seems more adequate according to all metrics, especially in the case of wee1Delta cells.
The time-profile of cell growth in fission yeast: model selection criteria favoring bilinear models over exponential ones.
阅读:4
作者:Buchwald Peter, Sveiczer Akos
| 期刊: | Theoretical Biology and Medical Modelling | 影响因子: | 0.000 |
| 时间: | 2006 | 起止号: | 2006 Mar 27; 3:16 |
| doi: | 10.1186/1742-4682-3-16 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
