Starch phosphorylase from Corynebacterium callunae is a dimeric protein in which each mol of 90 kDa subunit contains 1 mol pyridoxal 5'-phosphate as an active-site cofactor. To determine the mechanism by which phosphate or sulfate ions bring about a greater than 500-fold stabilization against irreversible inactivation at elevated temperatures (> or = 50 degrees C), enzyme/oxyanion interactions and their role during thermal denaturation of phosphorylase have been studied. By binding to a protein site distinguishable from the catalytic site with dissociation constants of Ksulfate = 4.5 mM and Kphosphate approximately 16 mM, dianionic oxyanions induce formation of a more compact structure of phosphorylase, manifested by (a) an increase by about 5% in the relative composition of the alpha-helical secondary structure, (b) reduced 1H/2H exchange, and (c) protection of a cofactor fluorescence against quenching by iodide. Irreversible loss of enzyme activity is triggered by the release into solution of pyridoxal 5'-phosphate, and results from subsequent intermolecular aggregation driven by hydrophobic interactions between phosphorylase subunits that display a temperature-dependent degree of melting of secondary structure. By specifically increasing the stability of the dimer structure of phosphorylase (probably due to tightened intersubunit contacts), phosphate, and sulfate, this indirectly (1) preserves a functional active site up to approximately 50 degrees C, and (2) stabilizes the covalent protein cofactor linkage up to approximately 70 degrees C. The effect on thermostability shows a sigmoidal and saturatable dependence on the concentration of phosphate, with an apparent binding constant at 50 degrees C of approximately 25 mM. The extra stability conferred by oxyanion-ligand binding to starch phosphorylase is expressed as a dramatic shift of the entire denaturation pathway to a approximately 20 degrees C higher value on the temperature scale.
Thermal denaturation pathway of starch phosphorylase from Corynebacterium callunae: oxyanion binding provides the glue that efficiently stabilizes the dimer structure of the protein.
阅读:3
作者:Griessler R, D'Auria S, Tanfani F, Nidetzky B
| 期刊: | Protein Science | 影响因子: | 5.200 |
| 时间: | 2000 | 起止号: | 2000 Jun;9(6):1149-61 |
| doi: | 10.1110/ps.9.6.1149 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
