Compressive Creep Performances of Dispersion Coated Particle Surrogate Fuel Pellets with ZrC-SiC Composite Matrix.

阅读:4
作者:Ren Qisen, Liu Yang, Fang Runjie, Wu Lixiang, Liu Weiqiang
Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (46 wt%), and Si (4 wt%) powder was ball-milled for 24 h and then evaporated to obtain ZrC-SiC composite material. ZrC-SiC composite was adopted as the matrix, with ZrO(2) surrogate kernel TRSIO particles and dispersion coated particle fuel pellets prepared with different TRISO packing fractions using the Spark Plasma Sintering (SPS) process. This study on compressive creep performances was conducted under a temperature range of 1373-2073 K and a stress range of 5-250 MPa, elucidating the creep behavior and mechanism of dispersed coated particles fuel pellets, and obtaining the variation laws of key parameters such as creep stress exponents and activation energy with TRISO packing fraction. The results showed that creep stress exponents of the surrogate fuel pellets are between 0.89 and 2.12. The activation energies for high temperature-low stress creep (1873-2073 K, 5-50 MPa) are 457.81-623.77 kJ/mol, and 135.14-161.59 kJ/mol for low temperature high stress creep (1373-1773 K, 50-250 MPa). Based on the experimental results, a high-temperature creep model was established, providing a valuable reference for the research and application of a ceramic matrix dispersed with coated particle fuels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。