BACKGROUND: Feature selection is commonly employed for identifying collectively-predictive biomarkers and biosignatures; it facilitates the construction of small statistical models that are easier to verify, visualize, and comprehend while providing insight to the human expert. In this work we extend established constrained-based, feature-selection methods to high-dimensional "omics" temporal data, where the number of measurements is orders of magnitude larger than the sample size. The extension required the development of conditional independence tests for temporal and/or static variables conditioned on a set of temporal variables. RESULTS: The algorithm is able to return multiple, equivalent solution subsets of variables, scale to tens of thousands of features, and outperform or be on par with existing methods depending on the analysis task specifics. CONCLUSIONS: The use of this algorithm is suggested for variable selection with high-dimensional temporal data.
Feature selection for high-dimensional temporal data.
阅读:8
作者:Tsagris Michail, Lagani Vincenzo, Tsamardinos Ioannis
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2018 | 起止号: | 2018 Jan 23; 19(1):17 |
| doi: | 10.1186/s12859-018-2023-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
