Acceleration of the excitation decay in Photosystem I immobilized on glass surface.

阅读:8
作者:Szewczyk Sebastian, Giera Wojciech, Białek Rafał, Burdziński Gotard, Gibasiewicz Krzysztof
Femtosecond transient absorption was used to study excitation decay in monomeric and trimeric cyanobacterial Photosystem I (PSI) being prepared in three states: (1) in aqueous solution, (2) deposited and dried on glass surface (either conducting or non-conducting), and (3) deposited on glass (conducting) surface but being in contact with aqueous solvent. The main goal of this contribution was to determine the reason of the acceleration of the excitation decay in dried PSI deposited on the conducting surface relative to PSI in solution observed previously using time-resolved fluorescence (Szewczyk et al., Photysnth Res 132(2):111-126, 2017). We formulated two alternative working hypotheses: (1) the acceleration results from electron injection from PSI to the conducting surface; (2) the acceleration is caused by dehydration and/or crowding of PSI proteins deposited on the glass substrate. Excitation dynamics of PSI in all three types of samples can be described by three main components of subpicosecond, 3-5, and 20-26 ps lifetimes of different relative contributions in solution than in PSI-substrate systems. The presence of similar kinetic components for all the samples indicates intactness of PSI proteins after their deposition onto the substrates. The kinetic traces for all systems with PSI deposited on substrates are almost identical and they decay significantly faster than the kinetic traces of PSI in solution. We conclude that the accelerated excitation decay in PSI-substrate systems is caused mostly by dense packing of proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。