Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head.

阅读:6
作者:Izadi Mohammad, Atangana Abdon
The subject of the article is devoted to the development of a matrix collocation technique based upon the combination of the fractional-order shifted Vieta-Lucas functions (FSVLFs) and the quasilinearization method (QLM) for the numerical evaluation of the fractional multi-order heat conduction model related to the human head with singularity and nonlinearity. The fractional operators are adopted in accordance with the Liouville-Caputo derivative. The quasilinearization method (QLM) is first utilized in order to defeat the inherent nonlinearity of the problem, which is converted to a family of linearized subequations. Afterward, we use the FSVLFs along with a set of collocation nodes as the zeros of these functions to reach a linear algebraic system of equations at each iteration. In the weighted [Formula: see text] norm, the convergence analysis of the FSVLFs series solution is established. We especially assert that the expansion series form of FSVLFs is convergent in the infinity norm with order [Formula: see text], where K represents the number of FSVLFs used in approximating the unknown solution. Diverse computational experiments by running the presented combined QLM-FSVLFs are conducted using various fractional orders and nonlinearity parameters. The outcomes indicate that the QLM-FSVLFs produces efficient approximate solutions to the underlying model with high-order accuracy, especially near the singular point. Furthermore, the methodology of residual error functions is employed to measure the accuracy of the proposed hybrid algorithm. Comparisons with existing numerical models show the superiority of QLM-FSVLFs, which also is straightforward in implementation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。