Correlation analysis reveals the emergence of coherence in the gene expression dynamics following system perturbation.

阅读:3
作者:Neretti Nicola, Remondini Daniel, Tatar Marc, Sedivy John M, Pierini Michela, Mazzatti Dawn, Powell Jonathan, Franceschi Claudio, Castellani Gastrone C
Time course gene expression experiments are a popular means to infer co-expression. Many methods have been proposed to cluster genes or to build networks based on similarity measures of their expression dynamics. In this paper we apply a correlation based approach to network reconstruction to three datasets of time series gene expression following system perturbation: 1) Conditional, Tamoxifen dependent, activation of the cMyc proto-oncogene in rat fibroblast; 2) Genomic response to nutrition changes in D. melanogaster; 3) Patterns of gene activity as a consequence of ageing occurring over a life-span time series (25y-90y) sampled from T-cells of human donors. We show that the three datasets undergo similar transitions from an "uncorrelated" regime to a positively or negatively correlated one that is symptomatic of a shift from a "ground" or "basal" state to a "polarized" state. In addition, we show that a similar transition is conserved at the pathway level, and that this information can be used for the construction of "meta-networks" where it is possible to assess new relations among functionally distant sets of molecular functions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。