Pioglitazone mediates apoptosis in Caki cells via downregulating c-FLIP(L) expression and reducing Bcl-2 protein stability

吡格列酮通过下调 c-FLIP(L) 表达和降低 Bcl-2 蛋白稳定性介导 Caki 细胞凋亡

阅读:5
作者:Ji Hoon Jang, Tae-Jin Lee, Eon-Gi Sung, In-Hwan Song, Joo-Young Kim

Abstract

Pioglitazone is an anti-diabetic agent used in the treatment of type 2 diabetes, which belongs to the thiazolidinediones (TZDs) group. TZDs target peroxisome proliferator-activated receptor γ (PPARγ), which functions as a transcription factor of the nuclear hormone receptor. Pioglitazone has antitumor effects in several cancer types and could be a tool for drug therapy in various cancer treatments. Nevertheless, the molecular basis for pioglitazone-induced anticancer effects in renal cancer (RC) has not yet been elucidated. Thus, the aim of the present study was to investigate the detailed signaling pathway underlying pioglitazone-induced apoptosis in Caki cells derived from human clear cell renal cell carcinoma. As a result, it was demonstrated by flow cytometry analysis and Annexin V-propidium iodide staining that pioglitazone treatment induced apoptotic cell death in a dose-dependent manner in Caki cells. The protein expression levels of cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP)(L) and Bcl-2, which were determined by western blotting, decreased after pioglitazone treatment in Caki cells. Flow cytometry and western blot analyses demonstrated that pioglitazone-mediated apoptosis was blocked following pretreatment with the pan-caspase inhibitor, z-VAD-fmk, indicating that pioglitazone-induced apoptosis was mediated via a caspase-dependent signaling pathway. However, the reactive oxygen species (ROS) scavenger, N-acetylcysteine (NAC), did not affect pioglitazone-mediated apoptosis and degradation of c-FLIP(L) and Bcl-2 protein. Of note, it was found by western blot analysis that Bcl-2 protein expression was downregulated by the decreased protein stability of Bcl-2 in pioglitazone-treated Caki cells. In conclusion, these findings indicated that pioglitazone-induced apoptosis is regulated through caspase-mediated degradation of FLIP(L) and reduction of Bcl-2 protein stability, suggesting that pioglitazone is a feasible apoptotic agent that could be used in the treatment of human RC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。