Brain tumors present a significant medical challenge, demanding accurate and timely diagnosis for effective treatment planning. These tumors disrupt normal brain functions in various ways, giving rise to a broad spectrum of physical, cognitive, and emotional challenges. The daily increase in mortality rates attributed to brain tumors underscores the urgency of this issue. In recent years, advanced medical imaging techniques, particularly magnetic resonance imaging (MRI), have emerged as indispensable tools for diagnosing brain tumors. Brain MRI scans provide high-resolution, non-invasive visualization of brain structures, facilitating the precise detection of abnormalities such as tumors. This study aims to propose an effective neural network approach for the timely diagnosis of brain tumors. Our experiments utilized a multi-class MRI image dataset comprising 21,672 images related to glioma tumors, meningioma tumors, and pituitary tumors. We introduced a novel neural network-based feature engineering approach, combining 2D convolutional neural network (2DCNN) and VGG16. The resulting 2DCNN-VGG16 network (CVG-Net) extracted spatial features from MRI images using 2DCNN and VGG16 without human intervention. The newly created hybrid feature set is then input into machine learning models to diagnose brain tumors. We have balanced the multi-class MRI image features data using the Synthetic Minority Over-sampling Technique (SMOTE) approach. Extensive research experiments demonstrate that utilizing the proposed CVG-Net, the k-neighbors classifier outperformed state-of-the-art studies with a k-fold accuracy performance score of 0.96. We also applied hyperparameter tuning to enhance performance for multi-class brain tumor diagnosis. Our novel proposed approach has the potential to revolutionize early brain tumor diagnosis, providing medical professionals with a cost-effective and timely diagnostic mechanism.
CVG-Net: novel transfer learning based deep features for diagnosis of brain tumors using MRI scans.
阅读:3
作者:Al-Otaibi Shaha, Rehman Amjad, Raza Ali, Alyami Jaber, Saba Tanzila
| 期刊: | PeerJ Computer Science | 影响因子: | 2.500 |
| 时间: | 2024 | 起止号: | 2024 May 17; 10:e2008 |
| doi: | 10.7717/peerj-cs.2008 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
