Human mutations in PQBP1, a molecule involved in transcription and splicing, result in a reduced but architecturally normal brain. Examination of a conditional Pqbp1-knockout (cKO) mouse with microcephaly failed to reveal either abnormal centrosomes or mitotic spindles, increased neurogenesis from the neural stem progenitor cell (NSPC) pool or increased cell death in vivo. Instead, we observed an increase in the length of the cell cycle, particularly for the M phase in NSPCs. Corresponding to the developmental expression of Pqbp1, the stem cell pool in vivo was decreased at E10 and remained at a low level during neurogenesis (E15) in Pqbp1-cKO mice. The expression profiles of NSPCs derived from the cKO mouse revealed significant changes in gene groups that control the M phase, including anaphase-promoting complex genes, via aberrant transcription and RNA splicing. Exogenous Apc4, a hub protein in the network of affected genes, recovered the cell cycle, proliferation, and cell phenotypes of NSPCs caused by Pqbp1-cKO. These data reveal a mechanism of brain size control based on the simple reduction of the NSPC pool by cell cycle time elongation. Finally, we demonstrated that in utero gene therapy for Pqbp1-cKO mice by intraperitoneal injection of the PQBP1-AAV vector at E10 successfully rescued microcephaly with preserved cortical structures and improved behavioral abnormalities in Pqbp1-cKO mice, opening a new strategy for treating this intractable developmental disorder.
In utero gene therapy rescues microcephaly caused by Pqbp1-hypofunction in neural stem progenitor cells.
阅读:3
作者:Ito H, Shiwaku H, Yoshida C, Homma H, Luo H, Chen X, Fujita K, Musante L, Fischer U, Frints S G M, Romano C, Ikeuchi Y, Shimamura T, Imoto S, Miyano S, Muramatsu S-i, Kawauchi T, Hoshino M, Sudol M, Arumughan A, Wanker E E, Rich T, Schwartz C, Matsuzaki F, Bonni A, Kalscheuer V M, Okazawa H
| 期刊: | Molecular Psychiatry | 影响因子: | 10.100 |
| 时间: | 2015 | 起止号: | 2015 Apr;20(4):459-71 |
| doi: | 10.1038/mp.2014.69 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
