Predicting neurological Adverse Drug Reactions based on biological, chemical and phenotypic properties of drugs using machine learning models.

阅读:3
作者:Jamal Salma, Goyal Sukriti, Shanker Asheesh, Grover Abhinav
Adverse drug reactions (ADRs) have become one of the primary reasons for the failure of drugs and a leading cause of deaths. Owing to the severe effects of ADRs, there is an urgent need for the generation of effective models which can accurately predict ADRs during early stages of drug development based on integration of various features of drugs. In the current study, we have focused on neurological ADRs and have used various properties of drugs that include biological properties (targets, transporters and enzymes), chemical properties (substructure fingerprints), phenotypic properties (side effects (SE) and therapeutic indications) and a combinations of the two and three levels of features. We employed relief-based feature selection technique to identify relevant properties and used machine learning approach to generated learned model systems which would predict neurological ADRs prior to preclinical testing. Additionally, in order to explain the efficiency and applicability of the models, we tested them to predict the ADRs for already existing anti-Alzheimer drugs and uncharacterized drugs, respectively in side effect resource (SIDER) database. The generated models were highly accurate and our results showed that the models based on chemical (accuracy 93.20%), phenotypic (accuracy 92.41%) and combination of three properties (accuracy 94.18%) were highly accurate while the models based on biological properties (accuracy 82.11%) were highly informative.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。