Evaluation of cottonseed oil as a substitute for fish oil in the commercial diet for juvenile swimming crabs (Portunus trituberculatus).

阅读:4
作者:Xu Tiantian, Yang Zheng, Xie Shichao, Zhu Tingting, Zhao Wenli, Jin Min, Zhou Qicun
A six-week feeding trial was carried out to determine the feasibility of cottonseed oil (CSO) as a viable substitute for fish oil (FO) in the commercial diet of swimming crabs. Ninety healthy swimming crabs (initial body weight 34.28 ± 0.59 g) were randomly assigned to 90 plastic baskets. Three isonitrogenous and isolipidic diets (450 g/kg protein and 120 g/kg lipid) were formulated replacing FO with CSO at 0%, 50% and 100% (CSO-0, CSO-50, and CSO-100), respectively. Each diet was randomly allocated to three replicates, each consisting of 10 crabs. Results indicated that crabs fed with CSO-100 diet had the lowest the percent weight gain (PWG), specific growth rate (SGR) and survival among all treatments (P < 0.05). Albumin (ALB), glucose (GLU), triglyceride (TAG), total cholesterol (T-CHO), low-density lipoprotein cholesterol (LDL-C), non-esterified fatty acid (NEFA) contents and alkaline phosphatase (ALP), alanine amino transferase (ALT) activity in hemolymph were significantly affected by dietary substitution of FO with CSO (P < 0.05). The contents of total saturated fatty acids (SFA), total mono-unsaturated fatty acids (MUFA) and total long-chain polyunsaturated fatty acids (LC-PUFA) in the hepatopancreas and muscle were negatively correlated with the substitution level, whereas total n-6 polyunsaturated fatty acids (n-6 PUFA) and linoleic acid (18:2n-6) contents increased significantly with increasing levels of dietary substitution of FO with CSO (P < 0.05). Dietary substitution of FO with CSO resulted in changes in the composition of volatile substances in muscle, with 16 volatile substances in muscle significantly affected (P < 0.05). The relative expression of genes related to lipid synthesis such as fatty acid synthase (fas), acetyl-CoA carboxylase (acc) and glycerol-3-phosphate acyltransferase 1 (gpat1) in the hepatopancreas were significantly up-regulated in the CSO-50 group compared to other treatment groups (P < 0.05). The relative expression of fatty acid anabolism-related genes fatty acyl desaturase 2 (fads2) and elongase 4 (elovl4) were significantly down-regulated with the increase of dietary substitution of FO with CSO (P < 0.05). In conclusion, 50% substitution with CSO had no negative effects on growth performance, promoted lipid synthesis and metabolism, facilitated lipid accumulation. However, complete substitution of FO with CSO inhibited fatty acid synthesis and metabolism, resulting in a lower tissue LC-PUFA content and an altered composition of muscle volatiles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。