Poly(lactic acid) (PLA) is a biodegradable thermoplastic polymer used in various applications, including food packaging, 3D printing, textiles, and biomedical devices. Nevertheless, it presents several limitations, such as high hydrophobicity, low gas barrier properties, UV sensitivity, and brittleness. To overcome this issue, in this study, biochar (BC) produced through pyrolysis of bio-mass waste was incorporated (1 wt.%, 2wt.%, and 3 wt.%-PLA 1, PLA 2, and PLA 3) to enhance thermal and mechanical properties of PLA composites. The impact of pyrolysis temperature on the kinetic parameters, physicochemical characteristics, and structural properties of banana and orange peels for use as biochar added to PLA was investigated. The biomass waste such as banana and orange peels were characterized by proximal analysis and thermogravimetric analysis (TGA); meanwhile, the PLA composites were characterized by tensile straight, TGA, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results indicated that the presence of biochar improved hygroscopic characteristics and Tg temperature from 62.98 °C for 1 wt.% to 80.29 °C for 3 wt.%. Additionally, it was found that the tensile strength of the composites increased by almost 30% for PLA 3 compared with PLA 1. The Young's modulus also increased from 194.334 MPa for PLA1 to 388.314 MPa for PLA3. However, the elongation decreased from 14.179 (PLA 1) to 7.240 mm (PLA3), and the maximum thermal degradation temperature shifted to lower temperatures ranging from 366 °C for PLA-1 to 345 °C for PLA-3 samples, respectively. From surface analysis, it was observed that the surface of these samples was relatively smooth, but small microcluster BC aggregates were visible, especially for the PLA 3 composite. In conclusion, the incorporation of biochar into PLA is a promising method for enhancing material performance while maintaining environmental sustainability by recycling biomass waste.
Pyrolyzed Biomass Filler for PLA-Based Food Packaging.
阅读:4
作者:Joe Andreea-CÄtÄlina, TÄnase Maria, CÄlin Catalina, Sîrbu Elena-Emilia, Banu IonuÈ, BomboÈ Dorin, Cuc Stanca
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 May 13; 17(10):1327 |
| doi: | 10.3390/polym17101327 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
