Strong charge carrier scattering at grain boundaries of PbTe caused by the collapse of metavalent bonding.

阅读:4
作者:Wu Riga, Yu Yuan, Jia Shuo, Zhou Chongjian, Cojocaru-Mirédin Oana, Wuttig Matthias
Grain boundaries (GBs) play a significant role in controlling the transport of mass, heat and charge. To unravel the mechanisms underpinning the charge carrier scattering at GBs, correlative microscopy combined with local transport measurements is realized. For the PbTe material, the strength of carrier scattering at GBs depends on its misorientation angle. A concomitant change in the barrier height is observed, significantly increasing from low- to high-angle GBs. Atom probe tomography measurements reveal a disruption of metavalent bonding (MVB) at the dislocation cores of low-angle GBs, as evidenced by the abrupt change in bond-rupture behavior. In contrast, MVB is completely destroyed at high-angle GBs, presumably due to the increased Peierls distortion. The collapse of MVB is accompanied by a breakdown of the dielectric screening, which explains the enlarged GB barrier height. These findings correlate charge carrier scattering with bonding locally, promising new avenues for the design of advanced functional materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。