[Formula: see text] model for analyzing [Formula: see text]-19 pandemic process via [Formula: see text]-Caputo fractional derivative and numerical simulation.

阅读:5
作者:Mohammadaliee Behnam, Roomi Vahid, Samei Mohammad Esmael
The objective of this study is to develop the [Formula: see text] epidemic model for [Formula: see text]-[Formula: see text] utilizing the [Formula: see text]-Caputo fractional derivative. The reproduction number ([Formula: see text]) is calculated utilizing the next generation matrix method. The equilibrium points of the model are computed, and both the local and global stability of the disease-free equilibrium point are demonstrated. Sensitivity analysis is discussed to describe the importance of the parameters and to demonstrate the existence of a unique solution for the model by applying a fixed point theorem. Utilizing the fractional Euler procedure, an approximate solution to the model is obtained. To study the transmission dynamics of infection, numerical simulations are conducted by using MatLab. Both numerical methods and simulations can provide valuable insights into the behavior of the system and help in understanding the existence and properties of solutions. By placing the values [Formula: see text], [Formula: see text] and [Formula: see text] instead of [Formula: see text], the derivatives of the Caputo and Caputo-Hadamard and Katugampola appear, respectively, to compare the results of each with real data. Besides, these simulations specifically with different fractional orders to examine the transmission dynamics. At the end, we come to the conclusion that the simulation utilizing Caputo derivative with the order of 0.95 shows the prevalence of the disease better. Our results are new which provide a good contribution to the current research on this field of research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。