Predicting Kidney Discard Using Machine Learning.

阅读:3
作者:Barah Masoud, Mehrotra Sanjay
BACKGROUND: Despite the kidney supply shortage, 18%-20% of deceased donor kidneys are discarded annually in the United States. In 2018, 3569 kidneys were discarded. METHODS: We compared machine learning (ML) techniques to identify kidneys at risk of discard at the time of match run and after biopsy and machine perfusion results become available. The cohort consisted of adult deceased donor kidneys donated between December 4, 2014, and July 1, 2019. The studied ML models included Random Forests (RF), Adaptive Boosting (AdaBoost), Neural Networks (NNet), Support Vector Machines (SVM), and K-nearest Neighbors (KNN). In addition, a Logistic Regression (LR) model was fitted and used for comparison with the ML models' performance. RESULTS: RF outperformed other ML models. Of 8036 discarded kidneys in the test dataset, LR correctly classified 3422 kidneys, whereas RF correctly classified 4762 kidneys (area under the receiver operative curve [AUC]: 0.85 versus 0.888, and balanced accuracy: 0.681 versus 0.759). For the kidneys with kidney donor profile index of >85% (6079 total), RF significantly outperformed LR in classifying discard and transplant prediction (AUC: 0.814 versus 0.717, and balanced accuracy: 0.732 versus 0.657). More than 388 kidneys were correctly classified using RF. Including biopsy and machine perfusion variables improved the performance of LR and RF (LR's AUC: 0.888 and balanced accuracy: 0.74 versus RF's AUC: 0.904 and balanced accuracy: 0.775). CONCLUSIONS: Kidneys that are at risk of discard can be more accurately identified using ML techniques such as RF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。