Double-branch feature fusion transformer for hyperspectral image classification.

阅读:3
作者:Dang Lanxue, Weng Libo, Hou Yane, Zuo Xianyu, Liu Yang
Deep learning methods, particularly Convolutional Neural Network (CNN), have been widely used in hyperspectral image (HSI) classification. CNN can achieve outstanding performance in the field of HSI classification due to its advantages of fully extracting local contextual features of HSI. However, CNN is not good at learning the long-distance dependency relation and dealing with the sequence properties of HSI. Thus, it is difficult to continuously improve the performance of CNN-based models because they cannot take full advantage of the rich and continuous spectral information of HSI. This paper proposes a new Double-Branch Feature Fusion Transformer model for HSI classification. We introduce Transformer into the process of HSI on account of HSI with sequence characteristics. The two branches of the model extract the global spectral features and global spatial features of HSI respectively, and fuse both spectral and spatial features through a feature fusion layer. Furthermore, we design two attention modules to adaptively adjust the importance of spectral bands and pixels for classification in HSI. Experiments and comparisons are carried out on four public datasets, and the results demonstrate that our model outperforms any compared CNN-Based models in terms of accuracy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。