The spatio-temporal study of wildfires has two complex elements that are the computational efficiency and longtime processing. Modelling the spatial variability of a wildfire could be performed in different ways, and an important issue is the computational facilities that the new methodological techniques afford us. The Markov random fields methods have made possible to build risk maps, but for many forest managers, it is more advantageous to know the size of the fire and its location. In the first part of this work, Stochastic Partial Differential Equation with Integrated Nested Laplace Approximation is utilised to model the size of the forest fires observed in the Valencian Community (Spain) and so it does the inclusion of the time effect, and the study of the emergency calls. The most crucial element in this paper is the inclusion of the improved meshes for the spatial effect and the time, these are, 2d (locations) and 1d (time) respectively. The advantage of the use of spatio-temporal meshes is described with the inclusion of Bayesian methodology in all the scenarios.
Spatio-temporal hierarchical Bayesian analysis of wildfires with Stochastic Partial Differential Equations. A case study from Valencian Community (Spain).
阅读:5
作者:Verdoy, Pablo, Juan
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2020 | 起止号: | 2019 Sep 4; 47(5):927-946 |
| doi: | 10.1080/02664763.2019.1661360 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
