Fracture Closure Empirical Model and Theoretical Damage Model of Rock under Compression.

阅读:4
作者:Chen Yifan, Lin Hang, Xie Shijie, Cao Rihong, Sun Shuwei, Zha Wenhua, Wang Yixian, Zhao Yanlin, Hu Huihua
The rock or rock mass in engineering often contains joints, fractures, voids, and other defects, which are the root cause of local or overall failure. In response to most of the current constitutive models that fail to simulate the nonlinear fracture compaction deformation in the whole process of rock failure, especially brittle rocks, a piecewise constitutive model was proposed to represent the global constitutive relation of rocks in this study, which was composed of the fracture compaction empirical model and the damage statistical constitutive model. The fracture empirical compaction model was determined by fitting the expressions of fracture closure curves of various rocks, while the rock damage evolution equation was derived underpinned by the fracture growth. According to the effective stress concept and strain equivalence hypothesis, the rock damage constitutive model was deduced. The model parameters of the fracture compaction empirical model and damage statistical constitutive model were all calculated by the geometrical characteristics of the global axial stress-strain curve to guarantee that the models are continuous and smooth at the curve intersection, which is also simple and ready to program. Finally, the uniaxial compression test data and the triaxial compression test data of different rocks in previous studies were employed to validate the models, and the determination coefficient was used to measure the accuracy. The results showed great consistency between the model curves and test data, especially in the pre-peak stage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。