Classification of time-reversal-invariant crystals with gauge structures.

阅读:6
作者:Chen Z Y, Zhang Zheng, Yang Shengyuan A, Zhao Y X
A peculiar feature of quantum states is that they may embody so-called projective representations of symmetries rather than ordinary representations. Projective representations of space groups-the defining symmetry of crystals-remain largely unexplored. Despite recent advances in artificial crystals, whose intrinsic gauge structures necessarily require a projective description, a unified theory is yet to be established. Here, we establish such a unified theory by exhaustively classifying and representing all 458 projective symmetry algebras of time-reversal-invariant crystals from 17 wallpaper groups in two dimensions-189 of which are algebraically non-equivalent. We discover three physical signatures resulting from projective symmetry algebras, including the shift of high-symmetry momenta, an enforced nontrivial Zak phase, and a spinless eight-fold nodal point. Our work offers a theoretical foundation for the field of artificial crystals and opens the door to a wealth of topological states and phenomena beyond the existing paradigms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。