A novel regulator CdsR negatively regulates cell motility in Bacillus thuringiensis.

阅读:3
作者:Zhang Xin, Chen Yuhan, Liu Yabin, Gang Lili, Yan Tinglu, Wang Hengjie, Peng Qi, Li Jie, Song Fuping
Cell motility increases the fitness of bacterial cells. Previous research focused on the transcriptional regulator CdsR, which represses cellular autolysis and promotes spore formation in Bacillus thuringiensis. However, the targets of CdsR are mostly unknown. Here, we reported a new function of CdsR in regulating cell motility. Mutation of cdsR results in increase of cell mobility, and a number of related genes were upregulated compared to wild type HD73. Thus, we investigated the transcription of the fla/che gene cluster, which involves in cell mobility and comprises eight operons/genes, including motAB1, cheY-yrhK, lamB-cheR, yaaR-fliG2, cheV-mogR, hag1, hag2, and yjbJ-flgG. Additionally, the motAB2 operon was discovered, which consists of homologs genes motA2 and motB2 that are like motA1 and motB1. Through promoter-lacZ fusion assays and EMSA experiments, it was discovered that CdsR directly regulates the motAB1, cheY-yrhK, lamB-cheR, yaaR-fliG2, cheV-mogR, hag1, hag2, yjbJ-flgG, and motAB2 operons by binding to their promoter regions. Importantly, it was confirmed that CdsR is a metalloregulator and the binding to promoter can be inhibited by Cu (II) ions. This research enhances our understanding of the regulation of cell mobility in B. thuringiensis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。