BACKGROUND: Computational identification of blood-secretory proteins, especially proteins with differentially expressed genes in diseased tissues, can provide highly useful information in linking transcriptomic data to proteomic studies for targeted disease biomarker discovery in serum. RESULTS: A new algorithm for prediction of blood-secretory proteins is presented using an information-retrieval technique, called manifold ranking. On a dataset containing 305 known blood-secretory human proteins and a large number of other proteins that are either not blood-secretory or unknown, the new method performs better than the previous published method, measured in terms of the area under the recall-precision curve (AUC). A key advantage of the presented method is that it does not explicitly require a negative training set, which could often be noisy or difficult to derive for most biological problems, hence making our method more applicable than classification-based data mining methods in general biological studies. CONCLUSION: We believe that our program will prove to be very useful to biomedical researchers who are interested in finding serum markers, especially when they have candidate proteins derived through transcriptomic or proteomic analyses of diseased tissues. A computer program is developed for prediction of blood-secretory proteins based on manifold ranking, which is accessible at our website http://csbl.bmb.uga.edu/publications/materials/qiliu/blood_secretory_protein.html.
In-silico prediction of blood-secretory human proteins using a ranking algorithm.
阅读:4
作者:Liu Qi, Cui Juan, Yang Qiang, Xu Ying
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2010 | 起止号: | 2010 May 14; 11:250 |
| doi: | 10.1186/1471-2105-11-250 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
