Stochastic forecasting of COVID-19 daily new cases across countries with a novel hybrid time series model.

阅读:4
作者:Bhattacharyya Arinjita, Chakraborty Tanujit, Rai Shesh N
An unprecedented outbreak of the novel coronavirus (COVID-19) in the form of peculiar pneumonia has spread globally since its first case in Wuhan province, China, in December 2019. Soon after, the infected cases and mortality increased rapidly. The future of the pandemic's progress was uncertain, and thus, predicting it became crucial for public health researchers. These predictions help the effective allocation of health-care resources, stockpiling, and help in strategic planning for clinicians, government authorities, and public health policymakers after understanding the extent of the effect. The main objective of this paper is to develop a hybrid forecasting model that can generate real-time out-of-sample forecasts of COVID-19 outbreaks for five profoundly affected countries, namely the USA, Brazil, India, the UK, and Canada. A novel hybrid approach based on the Theta method and autoregressive neural network (ARNN) model, named Theta-ARNN (TARNN) model, is developed. Daily new cases of COVID-19 are nonlinear, non-stationary, and volatile; thus, a single specific model cannot be ideal for future prediction of the pandemic. However, the newly introduced hybrid forecasting model with an acceptable prediction error rate can help healthcare and government for effective planning and resource allocation. The proposed method outperforms traditional univariate and hybrid forecasting models for the test datasets on an average.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。