Reversal of Earth's magnetic field polarity every 10(5) to 10(6) years is among the most far-reaching, yet enigmatic, geophysical phenomena. The short duration of reversals make precise temporal records of past magnetic field behavior paramount to understanding the processes that produce them. We correlate new (40)Ar/(39)Ar dates from transitionally magnetized lava flows to astronomically dated sediment and ice records to map the evolution of Earth's last reversal. The final 180° polarity reversal at ~773 ka culminates a complex process beginning at ~795 ka with weakening of the field, succeeded by increased field intensity manifested in sediments and ice, and then by an excursion and weakening of intensity at ~784 ka that heralds a >10 ka period wherein sediments record highly variable directions. The 22 ka evolution of this reversal suggested by our findings is mirrored by a numerical geodynamo simulation that may capture much of the naturally observed reversal process.
Synchronizing volcanic, sedimentary, and ice core records of Earth's last magnetic polarity reversal.
阅读:4
作者:Singer Brad S, Jicha Brian R, Mochizuki Nobutatsu, Coe Robert S
| 期刊: | Science Advances | 影响因子: | 12.500 |
| 时间: | 2019 | 起止号: | 2019 Aug 7; 5(8):eaaw4621 |
| doi: | 10.1126/sciadv.aaw4621 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
