Reliable streamflow and flood-affected area forecasting is vital for flood control and risk assessment in the Brahmaputra River basin. Based on the satellite remote sensing from four observation sites and ground observation at the Bahadurabad station, the Burg entropy spectral analysis (BESA), the configurational entropy spectral analysis (CESA), maximum likelihood (MLE), ordinary least squares (OLS), and the Yule-Walker (YW) method were developed for the spectral analysis and flood-season streamflow forecasting in the basin. The results indicated that the BESA model had a great advantage in the streamflow forecasting compared with the CESA and other traditional methods. Taking 20% as the allowable error, the forecast passing rate of the BESA model trained by the remote sensing data can reach 93% in flood seasons during 2003-2017, which was significantly higher than that trained by observed streamflow series at the Bahadurabad station. Furthermore, the segmented flood-affected area function with the input of the streamflow forecasted by the BESA model was able to forecast the annual trend of the flood-affected area of rice and tea but needed further improvement in extreme rainfall years. This paper provides a better flood-season streamflow forecasting method for the Brahmaputra River basin, which has the potential to be coupled with hydrological process models to enhance the forecasting accuracy.
Application of the Entropy Spectral Method for Streamflow and Flood-Affected Area Forecasting in the Brahmaputra River Basin.
阅读:3
作者:Wang Xiaobo, Wang Shaoqiang, Cui Huijuan
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2019 | 起止号: | 2019 Jul 25; 21(8):722 |
| doi: | 10.3390/e21080722 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
