The yeast CUP1 gene is activated by the copper-dependent binding of the transcriptional activator, Ace1p. An episome containing transcriptionally active or inactive CUP1 was purified in its native chromatin structure from yeast cells. The amount of RNA polymerase II on CUP1 in the purified episomes correlated with its transcriptional activity in vivo. Chromatin structures were examined by using the monomer extension technique to map translational positions of nucleosomes. The chromatin structure of an episome containing inactive CUP1 isolated from ace1Delta cells is organized into clusters of overlapping nucleosome positions separated by linkers. Novel nucleosome positions that include the linkers are occupied in the presence of Ace1p. Repositioning was observed over the entire CUP1 gene and its flanking regions, possibly over the entire episome. Mutation of the TATA boxes to prevent transcription did not prevent repositioning, implicating a chromatin remodeling activity recruited by Ace1p. These observations provide direct evidence in vivo for the nucleosome sliding mechanism proposed for remodeling complexes in vitro and indicate that remodeling is not restricted to the promoter but occurs over a chromatin domain including CUP1 and its flanking sequences.
Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
阅读:6
作者:Shen C H, Leblanc B P, Alfieri J A, Clark D J
| 期刊: | Molecular and Cellular Biology | 影响因子: | 2.700 |
| 时间: | 2001 | 起止号: | 2001 Jan;21(2):534-47 |
| doi: | 10.1128/MCB.21.2.534-547.2001 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
