The exponentiated generalized power series: Family of distributions: theory, properties and applications.

阅读:4
作者:Oluyede Broderick O, Mashabe B, Fagbamigbe A, Makubate B, Wanduku D
We propose a new generalized family of distributions called the exponentiated generalized power series (EGPS) family of distributions and study its sub-model, the exponentiated generalized logarithmic (EGL) class of distributions, in detail. The structural properties of the new model (EGPS) and its sub-model (EGL) distribution including moments, order statistics, Rényi entropy, and maximum likelihood estimates are derived. We used the method of maximum likelihood to estimate the parameters of this new family of distributions. Simulation study was carried out to examine the bias and the mean square error of the maximum likelihood estimators for each of the model's parameters. Finally, we showed real life data examples to illustrate the models' applicability, flexibility and usefulness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。