PURPOSE: In order to attain anatomical models, surgical guides and implants for computer-assisted surgery, accurate segmentation of bony structures in cone-beam computed tomography (CBCT) scans is required. However, this image segmentation step is often impeded by metal artifacts. Therefore, this study aimed to develop a mixed-scale dense convolutional neural network (MS-D network) for bone segmentation in CBCT scans affected by metal artifacts. METHOD: Training data were acquired from 20 dental CBCT scans affected by metal artifacts. An experienced medical engineer segmented the bony structures in all CBCT scans using global thresholding and manually removed all remaining noise and metal artifacts. The resulting gold standard segmentations were used to train an MS-D network comprising 100 convolutional layers using far fewer trainable parameters than alternative convolutional neural network (CNN) architectures. The bone segmentation performance of the MS-D network was evaluated using a leave-2-out scheme and compared with a clinical snake evolution algorithm and two state-of-the-art CNN architectures (U-Net and ResNet). All segmented CBCT scans were subsequently converted into standard tessellation language (STL) models and geometrically compared with the gold standard. RESULTS: CBCT scans segmented using the MS-D network, U-Net, ResNet and the snake evolution algorithm demonstrated mean Dice similarity coefficients of 0.87 ± 0.06, 0.87 ± 0.07, 0.86 ± 0.05, and 0.78 ± 0.07, respectively. The STL models acquired using the MS-D network, U-Net, ResNet and the snake evolution algorithm demonstrated mean absolute deviations of 0.44 mm ± 0.13 mm, 0.43 mm ± 0.16 mm, 0.40 mm ± 0.12 mm and 0.57 mm ± 0.22 mm, respectively. In contrast to the MS-D network, the ResNet introduced wave-like artifacts in the STL models, whereas the U-Net incorrectly labeled background voxels as bone around the vertebrae in 4 of the 9 CBCT scans containing vertebrae. CONCLUSION: The MS-D network was able to accurately segment bony structures in CBCT scans affected by metal artifacts.
Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network.
阅读:5
作者:Minnema Jordi, van Eijnatten Maureen, Hendriksen Allard A, Liberton Niels, Pelt Daniël M, Batenburg Kees Joost, Forouzanfar Tymour, Wolff Jan
| 期刊: | Medical Physics | 影响因子: | 3.200 |
| 时间: | 2019 | 起止号: | 2019 Nov;46(11):5027-5035 |
| doi: | 10.1002/mp.13793 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
