A kernel machine method for detecting higher order interactions in multimodal datasets: Application to schizophrenia.

阅读:4
作者:Alam Md Ashad, Lin Hui-Yi, Deng Hong-Wen, Calhoun Vince D, Wang Yu-Ping
BACKGROUND: Technological advances are enabling us to collect multimodal datasets at an increasing depth and resolution while with decreasing labors. Understanding complex interactions among multimodal datasets, however, is challenging. NEW METHOD: In this study, we tested the interaction effect of multimodal datasets using a novel method called the kernel machine for detecting higher order interactions among biologically relevant multimodal data. Using a semiparametric method on a reproducing kernel Hilbert space, we formulated the proposed method as a standard mixed-effects linear model and derived a score-based variance component statistic to test higher order interactions between multimodal datasets. RESULTS: The method was evaluated using extensive numerical simulation and real data from the Mind Clinical Imaging Consortium with both schizophrenia patients and healthy controls. Our method identified 13-triplets that included 6 gene-derived SNPs, 10 ROIs, and 6 gene-specific DNA methylations that are correlated with the changes in hippocampal volume, suggesting that these triplets may be important for explaining schizophrenia-related neurodegeneration. COMPARISON WITH EXISTING METHOD(S): The performance of the proposed method is compared with the following methods: test based on only first and first few principal components followed by multiple regression, and full principal component analysis regression, and the sequence kernel association test. CONCLUSIONS: With strong evidence (p-value ≤0.000001), the triplet (MAGI2, CRBLCrus1.L, FBXO28) is a significant biomarker for schizophrenia patients. This novel method can be applicable to the study of other disease processes, where multimodal data analysis is a common task.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。