The socio-demographic factors have a substantial impact on the overall casualties caused by the Coronavirus (COVID-19). In this study, the global and local spatial association between the key socio-demographic variables and COVID-19 cases and deaths in the European regions were analyzed using the spatial regression models. A total of 31 European countries were selected for modelling and subsequent analysis. From the initial 28 socio-demographic variables, a total of 2 (for COVID-19 cases) and 3 (for COVID-19 deaths) key variables were filtered out for the regression modelling. The spatially explicit regression modelling and mapping were done using four spatial regression models such as Geographically Weighted Regression (GWR), Spatial Error Model (SEM), Spatial Lag Model (SLM), and Ordinary Least Square (OLS). Additionally, Partial Least Square (PLS) and Principal Component Regression (PCR) was performed to estimate the overall explanatory power of the regression models. For the COVID cases, the local R(2) values, which suggesting the influences of the selected socio-demographic variables on COVID cases and death, were found highest in Germany, Austria, Slovenia, Switzerland, Italy. The moderate local R(2) was observed for Luxembourg, Poland, Denmark, Croatia, Belgium, Slovakia. The lowest local R(2) value for COVID-19 cases was accounted for Ireland, Portugal, United Kingdom, Spain, Cyprus, Romania. Among the 2 variables, the highest local R(2) was calculated for income (R(2)â¯=â¯0.71), followed by poverty (R(2)â¯=â¯0.45). For the COVID deaths, the highest association was found in Italy, Croatia, Slovenia, Austria. The moderate association was documented for Hungary, Greece, Switzerland, Slovakia, and the lower association was found in the United Kingdom, Ireland, Netherlands, Cyprus. This suggests that the selected demographic and socio-economic components, including total population, poverty, income, are the key factors in regulating overall casualties of COVID-19 in the European region. In this study, the influence of the other controlling factors, such as environmental conditions, socio-ecological status, climatic extremity, etc. have not been considered. This could be the scope for future research.
Examining the association between socio-demographic composition and COVID-19 fatalities in the European region using spatial regression approach.
阅读:4
作者:Sannigrahi Srikanta, Pilla Francesco, Basu Bidroha, Basu Arunima Sarkar, Molter Anna
| 期刊: | Sustainable Cities and Society | 影响因子: | 12.000 |
| 时间: | 2020 | 起止号: | 2020 Nov;62:102418 |
| doi: | 10.1016/j.scs.2020.102418 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
