Phosphatidylinositol transfer proteins (PITPs) regulate the interface between lipid metabolism and specific steps in membrane trafficking through the secretory pathway in eukaryotes. Herein, we describe the cis-acting information that controls PITPbeta localization in mammalian cells. We demonstrate PITPbeta localizes predominantly to the trans-Golgi network (TGN) and that this localization is independent of the phospholipid-bound state of PITPbeta. Domain mapping analyses show the targeting information within PITPbeta consists of three short C-terminal specificity elements and a nonspecific membrane-binding element defined by a small motif consisting of adjacent tryptophan residues (the W(202)W(203) motif). Combination of the specificity elements with the W(202)W(203) motif is necessary and sufficient to generate an efficient TGN-targeting module. Finally, we demonstrate that PITPbeta association with the TGN is tolerant to a range of missense mutations at residue serine 262, we describe the TGN localization of a novel PITPbeta isoform with a naturally occurring S262Q polymorphism, and we find no other genetic or pharmacological evidence to support the concept that PITPbeta localization to the TGN is obligately regulated by conventional protein kinase C (PKC) or the Golgi-localized PKC isoforms delta or epsilon. These latter findings are at odds with a previous report that conventional PKC-mediated phosphorylation of residue Ser262 is required for PITPbeta targeting to Golgi membranes.
Specific and nonspecific membrane-binding determinants cooperate in targeting phosphatidylinositol transfer protein beta-isoform to the mammalian trans-Golgi network.
阅读:5
作者:Phillips Scott E, Ile Kristina E, Boukhelifa Malika, Huijbregts Richard P H, Bankaitis Vytas A
| 期刊: | Molecular Biology of the Cell | 影响因子: | 2.700 |
| 时间: | 2006 | 起止号: | 2006 Jun;17(6):2498-512 |
| doi: | 10.1091/mbc.e06-01-0089 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
