Effect of bulk material on the reliability and failure mode of narrow implants.

阅读:5
作者:Benalcázar-Jalkh Ernesto B, Lopes Adolfo C O, Bergamo Edmara T P, de Carvalho Laura F, Witek Lukasz, Coelho Paulo G, Zahoui Abbas, Bonfante Estevam A
The aim of the study was to assess the effect of bulk material on the reliability and failure modes of narrow-diameter implants. Narrow implants (Ø3.5 × 10 mm - 11° internal conical connection) were manufactured from three different bulk materials: commercially pure titanium grade-IV (CP4), cold-worked titanium (CW), and 4Titude (4Ti), and were evaluated under fatigue testing. Eighteen samples per group were tested under step-stress accelerated life testing through 30° off-axis load application in mild, moderate, and aggressive loading profiles. The number of cycles and load at failure were used to calculate use-level probability curves and reliability for missions of 100,000 cycles up to 200 N, followed by fractographic analyses. Beta values suggested that damage accumulation dictated failures. Reliability analyses at 80, 120, and 150 N evidenced high reliability for narrow implants independent of bulk material. At 200 N, a decrease in reliability was observed for all groups (∼46%). Failure mode analysis depicted similar failures for all groups and comprised implant fracture, abutment fracture, and implant + abutment fractures. Narrow implants presented high reliability for physiologic masticatory forces in the anterior region. Characteristic strength, reliability, and failure modes were similar regardless of bulk material, suggesting that fatigue damage accumulation at thin wall implants dictated failure over bulk material strength.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。