Within-species floral evolution reveals convergence in adaptive walks during incipient pollinator shift.

阅读:3
作者:Wenzell Katherine E, Neequaye Mikhaela, Paajanen Pirita, Hill Lionel, Brett Paul, Byers Kelsey J R P
Understanding how evolution proceeds from molecules to organisms to interactions requires integrative studies spanning biological levels. Linking phenotypes with associated genes and fitness illuminates how adaptive walks move organisms between fitness peaks. Floral evolution can confer rapid reproductive isolation, often converging in association with pollinator guilds. Within the monkeyflowers (Mimulus sect. Erythranthe), yellow flowers within red hummingbird-pollinated species have arisen at least twice, suggesting possible pollinator shifts. We compare two yellow-flowered forms of M. cardinalis and M. verbenaceus to their red counterparts in floral phenotypes, biochemistry, transcriptomic and genomic variation, and pollinator interactions. We find convergence in ongoing adaptive walks of both yellow morphs, with consistent changes in traits of large effect (floral pigments, associated gene expression), resulting in strong preference for yellow flowers by bumblebees. Shifts in scent emission and floral opening size also favor bee adaptation, suggesting smaller-effect steps from hummingbird to bee pollination. By examining intraspecific, incipient pollinator shifts in two related species, we elucidate adaptive walks at early stages, revealing how convergent large effect mutations (floral color) may drive pollinator attraction, followed by smaller effect changes for mechanical fit and reward access. Thus, ongoing adaptive walks may impact reproductive isolation and incipient speciation via convergent evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。