Explaining the Genetic Causality for Complex Phenotype via Deep Association Kernel Learning.

阅读:3
作者:Bao Feng, Deng Yue, Du Mulong, Ren Zhiquan, Wan Sen, Liang Kenny Ye, Liu Shaohua, Wang Bo, Xin Junyi, Chen Feng, Christiani David C, Wang Meilin, Dai Qionghai
The genetic effect explains the causality from genetic mutations to the development of complex diseases. Existing genome-wide association study (GWAS) approaches are always built under a linear assumption, restricting their generalization in dissecting complicated causality such as the recessive genetic effect. Therefore, a sophisticated and general GWAS model that can work with different types of genetic effects is highly desired. Here, we introduce a deep association kernel learning (DAK) model to enable automatic causal genotype encoding for GWAS at pathway level. DAK can detect both common and rare variants with complicated genetic effects where existing approaches fail. When applied to four real-world GWAS datasets including cancers and schizophrenia, our DAK discovered potential casual pathways, including the association between dilated cardiomyopathy pathway and schizophrenia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。