The pharmaceutical compound entacapone ((E)-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl)-N,N-diethylprop-2-enamide) is important in the treatment of Parkinson's disease, exhibiting interesting polymorphic behavior upon crystallization from solution. It consistently produces its stable form A with a uniform crystal size distribution on the surface of an Au(111) template while concomitantly forming its metastable form D within the same bulk solution. Molecular modeling using empirical atomistic force-fields reveals more complex molecular and intermolecular structures for form D compared to form A, with the crystal chemistry of both polymorphs being dominated by van der Waals and Ï-Ï stacking interactions with lower contributions (ca. 20%) from hydrogen bonding and electrostatic interactions. Comparative lattice energies and convergence for the polymorphs are consistent with the observed concomitant polymorphic behavior. Synthon characterization reveals an elongated needle-like morphology for form D crystals in contrast to the more equant form A crystals with the surface chemistry of the latter exposing the molecules' cyano groups on its {010} and {011} habit faces. Density functional theory modeling of surface adsorption reveals preferential interactions between Au and the synthon G(A) interactions of form A on the Au surface. Molecular dynamics modeling of the entacapone/gold interface reveals the entacapone molecular structure within the first adsorbed layer to show nearly identical interaction distances, for both the molecules within form A or D with respect to the Au surface, while in the second and third layers when entacapone molecule-molecule interactions overtake the interactions between those of molecule-Au, the intermolecular structures are found to be closer to the form A structure than form D. In these layers, synthon G(A) (form A) could be reproduced with just two small azimuthal rotations (5° and 15°) whereas the closest alignment to a form D synthon requires larger azimuthal rotations (15° and 40°). The cyano functional group interactions with the Au template dominate interfacial interactions with these groups being aligned parallel to the Au surface and with nearest neighbor distances to Au atoms more closely matching those in form A than form D. The overall polymorph direction pathway thus encompasses consideration of molecular, crystal, and surface chemistry factors.
Role of Molecular, Crystal, and Surface Chemistry in Directing the Crystallization of Entacapone Polymorphs on the Au(111) Template Surface.
阅读:4
作者:Ma Cai Y, Geatches Dawn, Hsiao Ya-Wen, Kwokal Ana, Roberts Kevin J
| 期刊: | Crystal Growth & Design | 影响因子: | 3.400 |
| 时间: | 2023 | 起止号: | 2023 May 1; 23(6):4522-4537 |
| doi: | 10.1021/acs.cgd.3c00294 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
