Potent antitumor efficacy of human dental pulp stem cells armed with YSCH-01 oncolytic adenovirus

携带 YSCH-01 溶瘤腺病毒的人类牙髓干细胞具有强大的抗肿瘤功效

阅读:7
作者:Xu He, Wei Yao, Ji-Ding Zhu, Xin Jin, Xin-Yuan Liu, Kang-Jian Zhang, Shou-Liang Zhao

Background

Systemic administration of oncolytic adenovirus for cancer therapy is still a challenge. Mesenchymal stem cells as cell carriers have gained increasing attention in drug delivery due to their excellent tumor tropism, immunosuppressive modulatory effects, and paracrine effects. However, the potential of human dental pulp stem cells (hDPSCs) loaded with oncolytic adenovirus for cancer biotherapy has not been investigated yet.

Conclusions

These findings highlight the promising clinical potential of hDPSCs as a novel cell carrier in the field of oncolytic virus-based anti-cancer therapy.

Methods

The stemness of hDPSCs was characterized by FACS analysis and Alizarin red staining, Oil Red O staining, and immunofluorescence assays. The biological fitness of hDPSCs loaded with oncolytic adenovirus YSCH-01 was confirmed by virus infection with different dosages and cell viability CCK-8 assays. Additionally, the expression of CAR receptor in hDPSCs was detected by qPCR assay. Tumor tropism of hDPSC loaded with YSCH-01 in vitro and in vivo was investigated by Transwell assays and living tumor-bearing mice imaging technology and immunohistochemistry, Panoramic scanning of frozen section slices assay analysis. Furthermore, the antitumor efficacy was observed through the different routes of YSCH-01/hPDSCs administration in SW780 and SCC152 xenograft models. The direct tumor cell-killing effect of YSCH-01/hDPSCs in the co-culture system was studied, and the supernatant of YSCH-01/hDPSCs inhibited cell growth was further analyzed by CCK-8 assays.

Results

hDPSCs were found to be susceptible to infection by a novel oncolytic adenovirus named YSCH-01 and were capable of transporting this virus to tumor sites at 1000 VP/cell infectious dosage in vitro and in vivo. Moreover, it was discovered that intraperitoneal injection of hDPSCs loaded with oncolytic adenovirus YSCH-01 exhibited potential anti-tumor effects in both SW780 and SCC152 xenograft models. The crucial role played by the supernatant secretome derived from hDPSCs loaded with YSCH-01 significantly exerted a specific anti-tumor effect without toxicity for normal cells, in both an active oncolytic virus and an exogenous protein-independent manner. Furthermore, the use of hDPSCs as a cell carrier significantly reduced the required dosage of virus delivery in vivo compared to other methods. Conclusions: These findings highlight the promising clinical potential of hDPSCs as a novel cell carrier in the field of oncolytic virus-based anti-cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。