Compressibility of expansive soil mixed with sand and its correlation to index properties.

阅读:8
作者:Alnmr Ammar, Alsirawan Rashad, Ray Richard, Omran Alzawi Mounzer
Prior research has primarily focused on Atterberg limits, void ratios, and/or water content, often disregarding the impact of coarse material percentage in the soil, which significantly affects compressibility behavior. This paper examines the effects of sand content, initial degree of saturation, and initial dry unit weight on the compressibility behavior of expansive soils. Ninty-six oedometer tests were performed in order to accurately predict the compressibility behavior of expansive soils. The previous studies have attempted to correlate compressibility with different index properties separately, but no single study has taken into consideration all properties influencing compressibility behavior, especially for expansive soils. The findings show that compressibility is greatly influenced by the sand content, initial degree of saturation, and initial dry unit weight. Increasing the initial dry unit weight specifically lowers the compression index and permeability while raising the recompression index for the same percentage of added sand. Moreover, since swelling reduces with increasing initial saturation, raising the saturation degree also lowers the permeability, recompression index, and compression index. The results indicate that a sand content of more than 30 % is recommended for achieving desired properties in expansive clayey soil. This is a result of sand taking the dominant role in the soil mixture, which lowers soil suction and improves soil properties by reducing swelling, permeability, and compressibility. Symbolic regression equations were created to predict the compression and recompression indices, outperforming previous models in accurately predicting the compressibility behavior of expansive soils, considering the percentage of sand. The validation of these equations demonstrates their predictive capabilities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。