Capturing foraging and resting behavior using nested multivariate Markov models in an air-breathing marine vertebrate.

阅读:6
作者:Weinstein Ben G, Irvine Ladd, Friedlaender Ari S
BACKGROUND: Matching animal movement with the behaviors that shape life history requires a rigorous connection between the observed patterns of space use and inferred behavioral states. As animal-borne dataloggers capture a greater diversity and frequency of three dimensional movements, we can increase the complexity of movement models describing animal behavior. One challenge in combining data streams is the different spatial and temporal frequency of observations. Nested movement models provide a flexible framework for gleaning data from long-duration, but temporally sparse, data sources. RESULTS: Using a two-layer nested model, we combined geographic and vertical movement to infer traveling, foraging and resting behaviors of Humpback whales off the West Antarctic Peninsula. This approach refined previous work using only geographic data to delineate coarser behavioral states. Our results showed increased intensity in foraging activity in late season animals as the whales prepared to migrate north to tropical calving grounds. Our model also suggests strong diel variation in movement states, likely linked to daily changes in prey distribution. CONCLUSIONS: Using a combination of two-dimensional and three-dimensional movement data, we highlight the connection between whale movement and krill availability, as well as the complex spatial pattern of whale foraging in productive polar waters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。