BiLSTM-Kalman framework for precipitation downscaling under multiple climate change scenarios.

阅读:12
作者:Jahangiri Melika, Asghari Mahdi, Niksokhan Mohammad Hossein, Nikoo Mohammad Reza
Traditional downscaling techniques often fail to accurately represent critical extremes necessary for effective adaptation planning. This paper introduces the first application of Bidirectional Long Short-Term Memory (BiLSTM) networks with an adaptive Kalman filter for multi-scenario, high-resolution precipitation downscaling. We applied our methodology to Tehran, Iran, and systematically compared and ranked the performance of different CMIP6 projections, with the best performing model being MIROC (NSE: 0.902, R(2): 0.91, RMSE: 7.76). The optimized BiLSTM network alone demonstrated strong performance (R(2): 0.638, KGE: 0.684), with the adaptive Kalman filter dynamically adjusting its parameters according to precipitation intensity. Our novel contributions are a symmetric dependence loss for predicting extremes and graduated correction using percentiles. Examination of the Shared Socioeconomic Pathways (SSPs) 1 to 5 revealed surprising findings: the SSP1-2.6 (more sustainable) pathway predicted the highest extremes, with a 24.3% increase in 99th percentile intensity over the past. SSP2-4.5, SSP3-7.0, and SSP5-8.5 had increases of 17.8%, 16.5%, and 21.1%, respectively. Generated Intensity-Duration-Frequency curves indicated dramatic changes for short-duration events (10-30 min) under SSP5-8.5 with essential implications for infrastructure planning. Extreme precipitation events (> 95th percentile) revealed a frequency increase from 2.1 to 3.5% for SSP1-2.6 for events exceeding 20 mm/day. The integrated framework effectively translates coarse climate model outputs into practical engineering tools, providing the required quantitative information for planning climate-resilient infrastructure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。