Traditional downscaling techniques often fail to accurately represent critical extremes necessary for effective adaptation planning. This paper introduces the first application of Bidirectional Long Short-Term Memory (BiLSTM) networks with an adaptive Kalman filter for multi-scenario, high-resolution precipitation downscaling. We applied our methodology to Tehran, Iran, and systematically compared and ranked the performance of different CMIP6 projections, with the best performing model being MIROC (NSE: 0.902, R(2): 0.91, RMSE: 7.76). The optimized BiLSTM network alone demonstrated strong performance (R(2): 0.638, KGE: 0.684), with the adaptive Kalman filter dynamically adjusting its parameters according to precipitation intensity. Our novel contributions are a symmetric dependence loss for predicting extremes and graduated correction using percentiles. Examination of the Shared Socioeconomic Pathways (SSPs) 1 to 5 revealed surprising findings: the SSP1-2.6 (more sustainable) pathway predicted the highest extremes, with a 24.3% increase in 99th percentile intensity over the past. SSP2-4.5, SSP3-7.0, and SSP5-8.5 had increases of 17.8%, 16.5%, and 21.1%, respectively. Generated Intensity-Duration-Frequency curves indicated dramatic changes for short-duration events (10-30 min) under SSP5-8.5 with essential implications for infrastructure planning. Extreme precipitation events (>â95th percentile) revealed a frequency increase from 2.1 to 3.5% for SSP1-2.6 for events exceeding 20 mm/day. The integrated framework effectively translates coarse climate model outputs into practical engineering tools, providing the required quantitative information for planning climate-resilient infrastructure.
BiLSTM-Kalman framework for precipitation downscaling under multiple climate change scenarios.
阅读:3
作者:Jahangiri Melika, Asghari Mahdi, Niksokhan Mohammad Hossein, Nikoo Mohammad Reza
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 8; 15(1):24354 |
| doi: | 10.1038/s41598-025-08264-z | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
