Translational design for limited resource settings as demonstrated by Vent-Lock, a 3D-printed ventilator multiplexer

3D 打印呼吸机多路复用器 Vent-Lock 展示了针对有限资源环境的转化设计

阅读:8
作者:Helen Xun, Christopher Shallal, Justin Unger, Runhan Tao, Alberto Torres, Michael Vladimirov, Jenna Frye, Mohit Singhala, Brockett Horne, Bo Soo Kim, Broc Burke, Michael Montana, Michael Talcott, Bradford Winters, Margaret Frisella, Bradley S Kushner, Justin M Sacks, James K Guest, Sung Hoon Kang, J

Background

Mechanical ventilators are essential to patients who become critically ill with acute respiratory distress syndrome (ARDS), and shortages have been reported due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Conclusions

While possible, due to the complexity, need for experienced operators, and associated risks, ventilator multiplexing should only be reserved for urgent situations with no other alternatives. Our report underscores the initial design and engineering considerations required for rapid medical device prototyping via 3D printing in limited resource environments, including considerations for design, material selection, production, and distribution. We note that optimization of engineering may minimize 3D printing production risks but may not address the inherent risks of the device or change its indications. Thus, our case report provides insights to inform future rapid prototyping of medical devices.

Methods

We utilized 3D printing (3DP) technology to rapidly prototype and test critical components for a novel ventilator multiplexer system, Vent-Lock, to split one ventilator or anesthesia gas machine between two patients. FloRest, a novel 3DP flow restrictor, provides clinicians control of tidal volumes and positive end expiratory pressure (PEEP), using the 3DP manometer adaptor to monitor pressures. We tested the ventilator splitter circuit in simulation centers between artificial lungs and used an anesthesia gas machine to successfully ventilate two swine.

Results

As one of the first studies to demonstrate splitting one anesthesia gas machine between two swine, we present proof-of-concept of a de novo, closed, multiplexing system, with flow restriction for potential individualized patient therapy. Conclusions: While possible, due to the complexity, need for experienced operators, and associated risks, ventilator multiplexing should only be reserved for urgent situations with no other alternatives. Our report underscores the initial design and engineering considerations required for rapid medical device prototyping via 3D printing in limited resource environments, including considerations for design, material selection, production, and distribution. We note that optimization of engineering may minimize 3D printing production risks but may not address the inherent risks of the device or change its indications. Thus, our case report provides insights to inform future rapid prototyping of medical devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。