Utilizing genomic data to predict cancer prognosis was insufficient. Proteomics can improve our understanding of the etiology and progression of cancer and improve the assessment of cancer prognosis. And the Clinical Proteomic Tumor Analysis Consortium (CPTAC) has generated extensive proteomics data of the vast majority of tumors. Based on CPTAC, we can perform a proteomic pan-carcinoma analysis. We collected the proteomics data and clinical features of cancer patients from CPTAC. Then, we screened 69 differentially expressed proteins (DEPs) with R software in five cancers: hepatocellular carcinoma (HCC), children's brain tumor tissue consortium (CBTTC), clear cell renal cell carcinoma (CCRC), lung adenocarcinoma (LUAD) and uterine corpus endometrial carcinoma (UCEC). GO and KEGG analysis were performed to clarify the function of these proteins. We also identified their interactions. The DEPs-based prognostic model for predicting over survival was identified by least absolute shrinkage and selection operator (LASSO)-Cox regression model in training cohort. Then, we used the time-dependent receiver operating characteristics analysis to evaluate the ability of the prognostic model to predict overall survival and validated it in validation cohort. The results showed that the DEPs-based prognostic model could accurately and effectively predict the survival rate of most cancers.
Development of cancer prognostic signature based on pan-cancer proteomics.
阅读:4
作者:Huang Weiguo, Chen Jianhui, Weng Wanqing, Xiang Yukai, Shi Hongqi, Shan Yunfeng
| 期刊: | Bioengineered | 影响因子: | 4.200 |
| 时间: | 2020 | 起止号: | 2020 Dec;11(1):1368-1381 |
| doi: | 10.1080/21655979.2020.1847398 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
