Balancing prediction accuracy, model interpretability, and domain generalization (also known as [a.k.a.] out-of-distribution testing/evaluation) is a central challenge in machine learning. To assess this challenge, we took 120 interpretable and 166 opaque models from 77,640 tuned configurations, complemented with ChatGPT, 3 probabilistic language models, and Vec2Read. The models first performed text classification to derive principles of textual complexity (task 1) and then generalized these to predict readers' appraisals of processing difficulty (task 2). The results confirmed the known accuracy-interpretability trade-off on task 1. However, task 2's domain generalization showed that interpretable models outperform complex, opaque models. Multiplicative interactions further improved interpretable models' domain generalization incrementally. We advocate for the value of big data for training, complemented by (1) external theories to enhance interpretability and guide machine learning and (2) small, well-crafted out-of-distribution data to validate models-together ensuring domain generalization and robustness against data shifts.
Model interpretability enhances domain generalization in the case of textual complexity modeling.
阅读:4
作者:van der Sluis Frans, van den Broek Egon L
| 期刊: | Patterns | 影响因子: | 7.400 |
| 时间: | 2025 | 起止号: | 2025 Feb 6; 6(2):101177 |
| doi: | 10.1016/j.patter.2025.101177 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
