Adult hippocampal neural stem and progenitor cells (NSPCs) secrete a variety of proteins that affect tissue function. Though several individual NSPC-derived proteins have been shown to impact key cellular processes, a broad characterization is lacking. Secretome profiling of low abundance stem cell populations is typically achieved via proteomic characterization of in vitro, isolated cells. Here, we identified hundreds of secreted proteins in conditioned media from in vitro adult mouse hippocampal NSPCs using an antibody array and mass spectrometry. Comparison of protein abundance between antibody array and mass spectrometry plus quantification of several key secreted proteins by ELISA revealed notable disconnect between methods in what proteins were identified as being high versus low abundance, suggesting that data from antibody arrays in particular should be approached with caution. We next assessed the NSPC secretome on a transcriptional level with single cell and bulk RNA sequencing (RNAseq) of cultured NSPCs. Comparison of RNAseq transcript levels of highly secreted proteins revealed that quantification of gene expression did not necessarily predict relative protein abundance. Interestingly, comparing our in vitro NSPC gene expression data with similar data from freshly isolated, in vivo hippocampal NSPCs revealed strong correlations in global gene expression between in vitro and in vivo NSPCs. Understanding the components and functions of the NSPC secretome is essential to understanding how these cells may modulate the hippocampal neurogenic niche. Cumulatively, our data emphasize the importance of using proteomics in conjunction with transcriptomics and highlights the need for better methods of unbiased secretome profiling.
Defining the adult hippocampal neural stem cell secretome: In vivo versus in vitro transcriptomic differences and their correlation to secreted protein levels.
阅读:3
作者:Denninger Jiyeon K, Chen Xi, Turkoglu Altan M, Sarchet Patricia, Volk Abby R, Rieskamp Joshua D, Yan Pearlly, Kirby Elizabeth D
| 期刊: | Brain Research | 影响因子: | 2.600 |
| 时间: | 2020 | 起止号: | 2020 May 15; 1735:146717 |
| doi: | 10.1016/j.brainres.2020.146717 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
