Painting has played a major role in human expression, evolving subject to a complex interplay of representational conventions, social interactions, and a process of historization. From individual qualitative work of art historians emerges a metanarrative that remains difficult to evaluate in its validity regarding emergent macroscopic and underlying microscopic dynamics. The full scope of granular data, the summary statistics, and consequently, also their bias simply lie beyond the cognitive limit of individual qualitative human scholarship. Yet, a more quantitative understanding is still lacking, driven by a lack of data and a persistent dominance of qualitative scholarship in art history. Here, we show that quantitative analyses of creative processes in landscape painting can shed light, provide a systematic verification, and allow for questioning the emerging metanarrative. Using a quasicanonical benchmark dataset of 14,912 landscape paintings, covering a period from the Western renaissance to contemporary art, we systematically analyze the evolution of compositional proportion via a simple yet coherent information-theoretic dissection method that captures iterations of the dominant horizontal and vertical partition directions. Tracing frequency distributions of seemingly preferred compositions across several conceptual dimensions, we find that dominant dissection ratios can serve as a meaningful signature to capture the unique compositional characteristics and systematic evolution of individual artist bodies of work, creation date time spans, and conventional style periods, while concepts of artist nationality remain problematic. Network analyses of individual artists and style periods clarify their rhizomatic confusion while uncovering three distinguished yet nonintuitive supergroups that are meaningfully clustered in time.
Dissecting landscape art history with information theory.
阅读:4
作者:Lee Byunghwee, Seo Min Kyung, Kim Daniel, Shin In-Seob, Schich Maximilian, Jeong Hawoong, Han Seung Kee
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2020 | 起止号: | 2020 Oct 27; 117(43):26580-26590 |
| doi: | 10.1073/pnas.2011927117 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
