BACKGROUND: Influenza A virus (IAV) continues to pose serious threats to public health. The current prophylaxis and therapeutic interventions for IAV requires frequent changes due to the continuous antigenic drift and antigenic shift of IAV. Emerging evidence indicates that the host microRNAs (miRNAs) play critical roles in intricate host-pathogen interaction networks. Cellular miRNAs may directly target virus to inhibit its infection and be developed as potential anti-virus drugs. METHODS: In this study, we established a broad-spectrum anti-IAV miRNA screening method using miRanda software. The screened miRNAs were further verified by luciferase assay, viral protein expression assay and virus replication assay. RESULTS: Five cellular miRNAs (miR-188-3p, miR-345-5p, miR-3183, miR-15-3p and miR-769-3p), targeting 99.96, 95.31, 92.9, 94.58 and 97.24% of human IAV strains recorded in NCBI, respectively, were chosen for further experimental verification. Finally, we found that miR-188-3p downregulated PB2 expression at both mRNA and protein levels by directly targeted the predicted sites on PB2 and effectively inhibited the replication of IAV (H1N1, H5N6 and H7N9) in A549 cells. CONCLUSIONS: This is the first report screening cellular miRNAs that broad-spectrum inhibiting IAV infection. These findings suggested that cellular miR-188-3p could be used for RNAi-mediated anti-IAV therapeutic strategies.
Identification of cellular microRNA miR-188-3p with broad-spectrum anti-influenza A virus activity.
阅读:12
作者:Cui Huan, Zhang Chunmao, Zhao Zongzheng, Zhang Cheng, Fu Yingying, Li Jiaming, Chen Guanxi, Lai Mengxi, Li Zhixiang, Dong Shishan, Chen Ligong, Li Zhaoyang, Wang Chengyu, Liu Juxiang, Gao Yuwei, Guo Zhendong
| 期刊: | Virology Journal | 影响因子: | 3.800 |
| 时间: | 2020 | 起止号: | 2020 Jan 30; 17(1):12 |
| doi: | 10.1186/s12985-020-1283-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
