Modeling ventricle active contraction based on in vivo data is extremely challenging because of complex ventricle geometry, dynamic heart motion and active contraction where the reference geometry (zero-stress geometry) changes constantly. A new modeling approach using different diastole and systole zero-load geometries was introduced to handle the changing zero-load geometries for more accurate stress/strain calculations. Echo image data were acquired from 5 patients with infarction (Infarct Group) and 10 without (Non-Infarcted Group). Echo-based computational two-layer left ventricle models using one zero-load geometry (1G) and two zero-load geometries (2G) were constructed. Material parameter values in Mooney-Rivlin models were adjusted to match echo volume data. Effective Young's moduli (YM) were calculated for easy comparison. For diastole phase, begin-filling (BF) mean YM value in the fiber direction (YM(f)) was 738% higher than its end-diastole (ED) value (645.39 kPa vs. 76.97 kPa, p=3.38E-06). For systole phase, end-systole (ES) YM(f) was 903% higher than its begin-ejection (BE) value (1025.10 kPa vs. 102.11 kPa, p=6.10E-05). Comparing systolic and diastolic material properties, ES YM(f) was 59% higher than its BF value (1025.10 kPa vs. 645.39 kPa. p=0.0002). BE mean stress value was 514% higher than its ED value (299.69 kPa vs. 48.81 kPa, p=3.39E-06), while BE mean strain value was 31.5% higher than its ED value (0.9417 vs. 0.7162, p=0.004). Similarly, ES mean stress value was 562% higher than its BF value (19.74 kPa vs. 2.98 kPa, p=6.22E-05), and ES mean strain value was 264% higher than its BF value (0.1985 vs. 0.0546, p=3.42E-06). 2G models improved over 1G model limitations and may provide better material parameter estimation and stress/strain calculations.
Modeling Active Contraction and Relaxation of Left Ventricle Using Different Zero-load Diastole and Systole Geometries for Better Material Parameter Estimation and Stress/Strain Calculations.
阅读:7
作者:Fan Longling, Yao Jing, Yang Chun, Xu Di, Tang Dalin
| 期刊: | Molecular & Cellular Biomechanics | 影响因子: | 0.000 |
| 时间: | 2016 | 起止号: | 2016;13(1):33-55 |
| doi: | 10.3970/mcb.2016.013.044 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
